Introduction:

In this article, I will guide you through the process of setting up a WebRTC connection using Python to stream camera frames from one machine to another. WebRTC (Web Real-Time Communication) enables peer-to-peer communication, which is ideal for tasks such as live video streaming. By the end of this tutorial, you will have a working example of streaming video frames from a remote server to a local machine.

Prerequisites:

Setting Up the Environment:

First, we need to install the necessary libraries. Run the following command to install the required dependencies:

pip install aiortc opencv-python

The Sender Script (Remote Machine)

The sender script captures video frames from the camera and sends them to the receiver. Below is the sender.py script:

import asyncio
import cv2
from aiortc import RTCPeerConnection, RTCSessionDescription, VideoStreamTrack
from aiortc.contrib.signaling import TcpSocketSignaling
from av import VideoFrame
import fractions
from datetime import datetime

class CustomVideoStreamTrack(VideoStreamTrack):
    def __init__(self, camera_id):
        super().__init__()
        self.cap = cv2.VideoCapture(camera_id)
        self.frame_count = 0

    async def recv(self):
        self.frame_count += 1
        print(f"Sending frame {self.frame_count}")
        ret, frame = self.cap.read()
        if not ret:
            print("Failed to read frame from camera")
            return None
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        video_frame = VideoFrame.from_ndarray(frame, format="rgb24")
        video_frame.pts = self.frame_count
        video_frame.time_base = fractions.Fraction(1, 30)  # Use fractions for time_base
        # Add timestamp to the frame
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3]  # Current time with milliseconds
        cv2.putText(frame, timestamp, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)

        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        video_frame = VideoFrame.from_ndarray(frame, format="rgb24")
        video_frame.pts = self.frame_count
        video_frame.time_base = fractions.Fraction(1, 30)  # Use fractions for time_base
        return video_frame

async def setup_webrtc_and_run(ip_address, port, camera_id):
    signaling = TcpSocketSignaling(ip_address, port)
    pc = RTCPeerConnection()
    video_sender = CustomVideoStreamTrack(camera_id)
    pc.addTrack(video_sender)

    try:
        await signaling.connect()

        @pc.on("datachannel")
        def on_datachannel(channel):
            print(f"Data channel established: {channel.label}")

        @pc.on("connectionstatechange")
        async def on_connectionstatechange():
            print(f"Connection state is {pc.connectionState}")
            if pc.connectionState == "connected":
                print("WebRTC connection established successfully")

        offer = await pc.createOffer()
        await pc.setLocalDescription(offer)
        await signaling.send(pc.localDescription)

        while True:
            obj = await signaling.receive()
            if isinstance(obj, RTCSessionDescription):
                await pc.setRemoteDescription(obj)
                print("Remote description set")
            elif obj is None:
                print("Signaling ended")
                break
        print("Closing connection")
    finally:
        await pc.close()

async def main():
    ip_address = "xxx.xxx.xx.xx" # Ip Address of Remote Server/Machine
    port = 9999
    camera_id = 2  # Change this to the appropriate camera ID
    await setup_webrtc_and_run(ip_address, port, camera_id)

if __name__ == "__main__":
    asyncio.run(main())

The Receiver Script (Local Machine)

The receiver script receives video frames from the sender and displays them. Below is the receiver.py script:

import asyncio
import cv2
import numpy as np
from aiortc import RTCPeerConnection, RTCSessionDescription, MediaStreamTrack
from aiortc.contrib.signaling import TcpSocketSignaling
from av import VideoFrame
from datetime import datetime, timedelta

class VideoReceiver:
    def __init__(self):
        self.track = None

    async def handle_track(self, track):
        print("Inside handle track")
        self.track = track
        frame_count = 0
        while True:
            try:
                print("Waiting for frame...")
                frame = await asyncio.wait_for(track.recv(), timeout=5.0)
                frame_count += 1
                print(f"Received frame {frame_count}")

                if isinstance(frame, VideoFrame):
                    print(f"Frame type: VideoFrame, pts: {frame.pts}, time_base: {frame.time_base}")
                    frame = frame.to_ndarray(format="bgr24")
                elif isinstance(frame, np.ndarray):
                    print(f"Frame type: numpy array")
                else:
                    print(f"Unexpected frame type: {type(frame)}")
                    continue

                 # Add timestamp to the frame
                current_time = datetime.now()
                new_time = current_time - timedelta( seconds=55)
                timestamp = new_time.strftime("%Y-%m-%d %H:%M:%S.%f")[:-3]
                cv2.putText(frame, timestamp, (10, frame.shape[0] - 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)
                cv2.imwrite(f"imgs/received_frame_{frame_count}.jpg", frame)
                print(f"Saved frame {frame_count} to file")
                cv2.imshow("Frame", frame)

                # Exit on 'q' key press
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
            except asyncio.TimeoutError:
                print("Timeout waiting for frame, continuing...")
            except Exception as e:
                print(f"Error in handle_track: {str(e)}")
                if "Connection" in str(e):
                    break
        print("Exiting handle_track")
async def run(pc, signaling):
    await signaling.connect()

    @pc.on("track")
    def on_track(track):
        if isinstance(track, MediaStreamTrack):
            print(f"Receiving {track.kind} track")
            asyncio.ensure_future(video_receiver.handle_track(track))

    @pc.on("datachannel")
    def on_datachannel(channel):
        print(f"Data channel established: {channel.label}")

    @pc.on("connectionstatechange")
    async def on_connectionstatechange():
        print(f"Connection state is {pc.connectionState}")
        if pc.connectionState == "connected":
            print("WebRTC connection established successfully")

    print("Waiting for offer from sender...")
    offer = await signaling.receive()
    print("Offer received")
    await pc.setRemoteDescription(offer)
    print("Remote description set")

    answer = await pc.createAnswer()
    print("Answer created")
    await pc.setLocalDescription(answer)
    print("Local description set")

    await signaling.send(pc.localDescription)
    print("Answer sent to sender")

    print("Waiting for connection to be established...")
    while pc.connectionState != "connected":
        await asyncio.sleep(0.1)

    print("Connection established, waiting for frames...")
    await asyncio.sleep(100)  # Wait for 35 seconds to receive frames

    print("Closing connection")

async def main():
    signaling = TcpSocketSignaling("192.168.30.40", 9999)
    pc = RTCPeerConnection()

    global video_receiver
    video_receiver = VideoReceiver()

    try:
        await run(pc, signaling)
    except Exception as e:
        print(f"Error in main: {str(e)}")
    finally:
        print("Closing peer connection")
        await pc.close()

if __name__ == "__main__":
    asyncio.run(main())

Running the Scripts:

  1. Run the sender script on the remote machine with the camera:
python sender.py